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FINITE ELEMEMT ANALYSIS OF NON-DARCY
MIXED CONVECTIVE HEAT AND MASS
TRANSFER IN A CIRCULAR ANNULUS WITH
RADIATION ABSORPTION
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Abstract: In this chapter we discuss the free and forced convection flow through a porous medium in a co-axial cylindrical duct where the
boundaries are maintained at constant temperature and concentration. The Brinkman Forchhimer extended Darcy equations which take into account the
boundary and inertia effects are used in the governing linear momentum equations. The effect of density variation is confined to the buoyancy term under

Boussinesq approximation.

Index Terms: Radiation Absorption, chemical reaction.

1. INTRODUCTION

Transport phenomena involving the combined influence
of thermal and concentration buoyancy are often encountered in
many engineering systems and natural environments. There are
many applications of such transport processes in the industry,
notably in chemical distilleries, heat exchangers, solar energy
collectors and thermal protection systems. In all such classes of
flows, the driving force is provided by a combination of thermal
and chemical diffusion effects. In atmosphere flows, thermal
convection of the earth by sunlight is affected by differences in
water vapour concentration. This buoyancy driven convection due
to coupled heat and mass transfer in porous media has also many
important applications in energy related engineering. These include
moisture migration, fibrous insulation, spreading of chemical
pollution in saturated soils, extraction of geothermal energy and
underground disposal of natural waste.

The increasing cost of energy has led technologists to
examine measures which could considerably reduce the usage of
the natural source energy. Thermal insulations will continue to find
increased use as engineers seek to reduce cost. Heat transfer in the
porous thermal insulation within vertical cylindrical annuli provide
us insight into the mechanism of energy transport and enable
engineers to use insulation more efficiently. In particular, design
engineers require relationships between heat transfer, geometry and
boundary conditions which can be utilized in cost —benefit analysis
to determine the amount of insulation that will yield the maximum
investment. Apart from this, the study of flow and heat transfer in
the annular region between the concentric cylinders has
applications in nuclear waste disposal research. It is known that
canisters filled with radioactive rays be buried in earth so as to
isolate them from human population and it is of interest to
determine the surface temperature of these canisters. This surface
temperature strongly depends on the buoyancy driven flows
sustained by the heated surface and the possible moment of ground
water past it. This phenomenon is ideal to the study of convection
flow in a porous medium contained in a cylindrical annulus (15, 16,
17).

Free convection in a vertical porous annulus has been
extensively studied by Prasad (15), Prasad and Kulacki (16) and
Prasad et al. (17) both theoretically and experimentally.
Caltagirone (3) has published a detailed theoretical study of free
convection in a horizontal porous annulus including possible three
dimensional and transient effects. Convection through annulus
region under steady state conditions has also been discussed with
two cylindrical surfaces kept at different temperatures (7). This
work has been extended in temperature dependent convection flow
(5, 6, 7T)as well as convection flows through horizontal porous
channel whose inner surface is maintained at constant temperature
while the other surface is maintained at circumferentially varying
sinusoidal temperature (10, 19, 27).

Free convection flow and heat transfer in hydromagnetic
case is important in nuclear and space technology (7, 11, 14, 22, 29,
30). In particular, such convection flow in a vertical annulus region
in the presence of radial magnetic field has been studied by Sastri
and Bhadram (20). Nanda and Purushotham ( 8) have analysed the
free convection of a thermal conducting viscous incompressible
fluid induced by travelling thermal waves on the circumference of a
long vertical circular cylindrical pipe. Whitehead (28) and Neeraja
(9) have made a study of the fluid flow and heat transfer in a
viscous incompressible fluid confined in an annulus bounded by
two rigid cylinders. The flow is generated by periodical travelling
waves imposed on the outer cylinder and the inner cylinder is
maintained at constant temperature.

Chen and Yuh (4) have investigated the heat and mass
transfer characteristics of natural convection flow along a vertical
cylinder under the combined buoyancy effects of thermal and
species diffusion. Sivanjaneya Prasad (23) has investigated the free
convection flow of an incompressible, viscous fluid through a
porous medium in the annulus between the porous concentric
cylinders under the influence of a radial magnetic field. Antonio (2)
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has investigated the laminar flow, heat transfer in a vertical

cylindrical duct by taking into account both viscous dissipation and
the effect of buoyancy, The limiting case of fully developed natural
convection in porous annuli is solved analytically for steady and
transient cases by Sharawi and Al-Nimir (21) and Al-Nimir (1).
Philip (13) has obtained solutions for the annular porous media
valid for low modified Reynolds number. Ravi (18) has analysed
the unsteady convective heat and mass transfer through a
cylindrical annulus with constant heat sources. Sreevani (25) has
studied the convective heat and mass transfer through a porous
medium in a cylindrical annulus under radial magnetic field with
Soret effect. Prasad (15) has analysed the convective heat and mass
transfer in an annulus in the presence of heat generating source
under radial magnetic field. Reddy (24) has discussed the Soret
effect on mixed convective heat and mass transfer through a porous
cylindrical annulus. For natural convection, the existence of large
temperature differences between the surfaces is important. Keeping
the applications in view, Sudheer Kumar et al. (26) have studied the
effect of radiation on natural convection over a vertical cylinder in
a porous media. Padmavathi (12) has analyzed the convective heat
transfer in a cylindrical annulus by using finite element method.

In this chapter, we discuss the free and forced convection
flow through a porous medium in a co-axial cylindrical duct where
the boundaries are maintained at constant temperature and
concentration. The Brinkman Forchhimer extended Darcy
equations which take into account the boundary and inertia effects
are used in the governing linear momentum equations. The effect
of density variation is confined to the buoyancy term under
Boussinesq approximation. The momentum, energy and diffusion
equations are coupled equations. In order to obtain a better insight
into this complex problem, we make use of Galerkin finite element
analysis with quadratic polynomial approximations. The Galerkin
finite element analysis has two important features. The first is that
the approximation solution is written directly as a linear
combination of approximation functions with unknown nodal
values as coefficients. Secondly, the approximation polynomials
are chosen exclusively from the lower order piecewise polynomials
restricted to contiguous elements. The behaviour of velocity,
temperature and concentration is analysed at different axial
positions. The shear stress and the rate of heat and mass transfer
have also been obtained for variations in the governing parameters.

SCHEMATIC DIAGRAM OF THE

'Dept. of Applied Mathematics, SPMVV, Tirupati, A.P.
Email id:parvathimani2008@gmail.com
*Dept. of Applied Mathematics, SPMVV, Tirupati, A.P.
Email id:maherahul.55@gmail.com

CONFIGURATION

8

3. FORMULATION OF THE PROBLEM

We consider the free and forced convection flow in a vertical
circular annulus through a porous medium whose walls are
maintained at constant temperature and concentration. The flow,
temperature and concentration in the fluid are assumed to be fully
developed. Both the fluid and porous regions have constant
physical properties and the flow is a mixed convection flow taking
place under thermal and molecular buoyancies and uniform axial
pressure gradient. The Boussenissq approximation is invoked so
that the density variation is confined to the thermal and molecular
buoyancy forces. The Brinkman-Forchhimer-Extended Darcy
model which accounts for the inertia and boundary effects has been
used for the momentum equation in the porous region. The
momentum, energy and diffusion equations are coupled and non-
linear. Also the flow is unidirectional along the axial direction of
the cylindrical annulus. Making use of the above assumptions the
governing equations are

op wu(d*u 1éu) u
-+ ==t |-u+ T-T
oz 5(5# r arJ KU PBT=To) @.1)

+pg,8'(C—Co)+5\/>uk2 =0
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where u is the axial velocity in the porous region, T, C are the
temperature and concentration of the fluid, k is the permeability of
porous medium, F is a function that depends on Reynolds number,
the microstructure of the porous medium and D, is the molecular
diffusivity, B is the coefficient of the thermal expansion, p* is the
coefficient of volume expansion, C, is the specific heat, p is

density and g is gravity.
The relevant boundary conditions are
u=0, T=T,,C=C; at r=a
u=0, T=T,, C=C, at r=ats 2.4

We now define the following non-dimensional variables

Z =—, Fr =—, U =—Uu
a a 7
T-T
p*zpaf, 9*= 0 , s*:E
PY T =T, a
e _C-C
C, - C,

Introducing these non-dimensional variables, the governing
equations in the non-dimensional form are (on removing the stars)

2

%*%%ww(oﬂwmm -0+ NC) (25)
r
2

2r?+%%_a0=Peru—QlC (26)
2

ZE+%%_yC=5chu @7)
r

Where A=FD™ (Inertia parameter or Forchhimer number)

G = gﬂ(ﬁ _2T0)a3
4

(Grashof number)

2

4 a
D™= ? (Inverse Darcy parameter)
a . . .
Nl = ———— (Non-dimensional temperature gradient)
T1 — o
Ba . . ) .
N , = ——— (Non-dimensional concentration gradient)
C,-C,
PCLY
P = ; (Prandtl number)

|4 .
SC = — (Schmidt number)
1

2

¥ =—— (Chemical reaction parameter)
1
(C.-C,a’
Q= M (Radiation absorption parameter)
ﬂ’ C p (Ti _TO)
oP
T=——
oz
The corresponding non-dimensional conditions are
u=0,0=1, Cc=1 at r=1
u=0,0=0, C=0 at r=1+s (2.8)

For N=0 the equations (2.5) — (2.7) reduce to that of padmavathi
(12)

For o = 0 they are in good agreement with Sudha (31)

4. FINITE ELEMENT ANALYSIS

The finite element analysis with quadratic polynomial
approximation functions is carried out along the radial distance
across the circular duct. The behaviour of the velocity,
temperature and concentration profiles has been discussed
computationally for different variations in governing parameters.
The Galerkin method has been adopted in the variational
formulation in each element to obtain the global coupled matrices
for the velocity, temperature and concentration in course of the
finite element analysis.
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Choose an arbitrary element E, and let u¥, 6 and C* be

the values of u, 6 and C in the element E

We define the error residuals as

k_i du k 4 2 ky2 (3.1)
Ep_dl’[ drj+&5(6’ +NC*)=5(DH)ru* —5%Ar(u*)

k
E“ =§'r(r ddi J—rPeruk —aro* +Qrct B2

(3.3)

k
_— [rdc

Tdrl dr

—yrC* —rScN,u*
dr ] Y 2

where uk, 0 & C* are values of u, 0 & C in the arbitrary element
ex. These are expressed as linear combinations in terms of
respective local nodal values.

U = Uiy +usy Uy,

0" =0y, +0y; +0;;

C* =Ciyy +Caoy; +Cay;

where t//lk , l//g --------- etc are Lagrange’s quadratic polynomials.

Following the Galerkin weighted residual method and integrating
by parts equations (3.1) - (3.3) we obtain

B,

Tr du* dyt

o drodr rAl "
~Q¥, Q! P Jrytar (34
A
K ( du* K |
—-Qy; :_(W (ry i) |ra.
du®
_Q;J‘:( J(‘/’)rB1

8, 8,

du dr—NlP jru yidr+Ry, +R/,

dr

~RY, - {de J(rw )r,.

(3.5)

dr—aejr(euNc Y dr + (M, )_[ru .dr+52Ajr(uk)2y/jkdr

R, = [de ](rw )|r,

rB; k d k rB;
qu” av; dr:NZScj'ru"l//;‘dr+Szkj+Slkj
A

o droodr
(3.6)
dck
_Slkj: { dr J(r‘//) ;
dC
S;j:(d j(r‘//) B,

Expressing u*, 6, Cin terms of local nodal values in (3.4) - (3.6)
we obtain

d
23: J' d'//' V/‘ dr- 6GZ(0“+NC )jry/,k kdr+6DIZIrwlkw.dr

A i=1 rp
8, , By
+8 AZu .[rUky/iky/jkdr:Qz’j +Qf| 7P'|'n//,ky/kdr
i=1 A A
3.7)
ZHkJ' dyt dv; dr-N qu J'ru/ky/kdwar?wr QZC r_?ry/kdr—Rk +Rf,
i=1 A dr d v i=1 A A 1| =1 A ! H
(3.8)
3 B, d k d B, B,

k Vi '//J Kk k K
%:C, r'!;r o dr dr—N Sc;u FLW v dr—;/lzllc rJ;lrr//J dr=Sj, +S,
(3.9

2 -

M; =D"' +M? (3.9a)

Choosing different W:-( ’s corresponding to each element €, in the
equation (3.7) yields a local stiffness matrix of order 3x 3 in the
form
(£ U) = &B(g )G +NC!) + D7 (my ) (uf) +
SEAM)(U) = Q) +(Q ) +(v))

(3.10)

Likewise the equations (3.8) & (3.9) give rise to stiffness matrices

(eikj)(aik) P (tikj)(uik)+ Ql(Cik) = R;j + lej
(3.11)

(Iik i )(Cik)_ Nzc(tik j )(Uik)_ﬂ’(cik) = S;; + Slkj
(3.12)
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where

(£ (@), mf), (). (&), (f))and

rB;
(tikj)are 3x3 matrices and v:? =P, J.rl//ikl//;(dr
A

and (Q;,) (Qlkj)’ (R;j)& (lej)’ (S;j) & (Slkj) are

3x1 column matrices. Such stiffness matrices (3.10) - (3.12) in
terms of local nodes in each element are assembled using
interelement continuity and equilibrium conditions to obtain the
coupled global matrices in terms of the global nodal values of u , 6
& C in the region.

In case we choose n quadratic elements, then the global
matrices are of order 2n+1. The ultimate coupled global matrices
are solved to determine the unknown global nodal values of the
velocity, temperature and concentration in fluid region. In solving
these global matrices an iteration procedure has been adopted to
include the boundary effects in the porous medium.

In fact, the non-linear term arises in the modified
Brinkman linear momentum equation (3.4) of the porous medium.
The iteration procedure in taking the global matrices is as follows.
We split the square term into a product term and keeping one of
them say U;’s under integration, the other is expanded in terms of
local nodal values as in (3.7), resulting in the corresponding

coefficient matrix (N ;'S) in(3.10), whose coefficients involve

the unknown u;’s . To evaluate (3.10), to begin with, choose the
initial global nodal values of u;’s as zeros in the zeroth
approximation. We evaluate u;’s, 0;’s and C;’s in the usual
procedure mentioned earlier. Later choosing these values of u;’s as
first order approximation calculate 0;’s, C;’s. In the second
iteration, we substitute for u;’s the first order approximation of u;’s
and the first approximation of 6;’s and C;’s and obtain second order
approximation. This procedure is repeated till the consecutive
values of u;’s, 06;’s and C;’s differ by a preassigned percentage.

For computational purpose we choose five elements in
flow region

The shape functions in the region are
S S
50(-1+r——)(-1+r—-—)
B 10

1
v, =
§?

IJSER © 2015
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W, =
52
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Vs =
§?

2s 3s
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( S)Ler =)

2
Vi, =
§2

25 S
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- 100( =)
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3s 2s
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( 5)( 5)

Vv, =— 52
S 2s
S0(-1+r—2)(-1+r——)
3 2 5
lr//3 - 2
S
50(-1+ r—ﬁ)(—1+ r—ﬁ)
4 _ 5 10
lr//l - 2
S
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4 _ 5 5
lr//2 - 52

7s 3s
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100(-1+r—s)(-1+r - 453)

WV, =— Sz
50(—1+r—%)(—1+r—ﬁ)
5 10 5
l//3 - 2

S
The global matrix for & is
A X, =B, (3.13)
The global matrix for C is
A, X, =B, (3.14)
The global matrix for u is

AX,=B, (315

fe; &, & 0 0 0 0 0 0 0 0

€y €y €y 000 0 0 0 0 0 0

Where €y By €y € € 0 0 0 0 0 0

0 0 ez e €6 0 0 0 0 0 0

0 0 € By B B €y 0 0 0 0

A={0 0 0 0 e e e 0 0 0 0

0 0 0 0 €5 €5 B B By 0 0

0 0 0 0 0 0 ¢ € & 0 0

0 0 0 0 0 0 ey €y g Ey B

0 0 0 0 0 0 0 0 ey g ey

100 0 0 0 0 0 0 ey ey &)
ky ko, kg 0 0 0 0 0 0 0 0]
ky ky, ky 00 0 0 0 0 0 0
Ky kp Ky Ky kg 00 0 0 0 0
0 0 ky ky kg 00 0 0 0 0
00 Ky ky kg kg Ky 0 0 0 0
A=[0 0 0 0 kg kg ky 0 0 0 0
0 0 0 0 ky ky ky ky ky 00
000 0 0 0 0 ky ky kg 0 0
000 0 0 0 0 ky kg kg Koy ke
000 0 0 0 0 0 0 Ky Kg Ky
L 0 0 0 0 0 0 0 0 klle klllO kllll_

hy by By 00 0 0 0 0 0 0]
hy hy By 00 0 0 0 0 0 0
hy hy by By hg 0 0 0 0 0 0
0 0 hyhyhe 00 0 0 0 0
0 0 hyhy by byhy 00 0 0
A=[0 0 0 0 hghyhy 0 0 0 0
000 0 0 hghyhyhy hy 0 0
000 0 0 0 0fhyh hy 0 0
0 0 0 0 0 0 h97 h98 h99 h910 h911
0.0 0 0 0 0 0 0 hy hyy hy,
000 0 0 0 0 0 0 hy by by

h, =f,,+D7'm;, +5°An;,

6, ] C, Uy
0, C, u,
0, C, Us
0, C, u,
b, Cs Us
Xy=| b, X, =|Cs X5 =| Ug
b, C, U,
0y Cs Ug
0, C, Ug
O Cio Uso
10| 1Cu | | U |
F! Fl] F} ]
F? X F?
F: F2 F;
F F F
FS F> F
B,=| F} B,=| F? B;=| F,
F/ F F/
Fe Fe Fe
F? F? F
F0 F0 FL0
Fu F F

(The details of e, etc, hy et, Fetc, F, etc, F aregiven
in the appendix).
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The equilibrium conditions are _ l//f C13 n l//22 C14 i l//§ C15
R31,+R12:0, R§+R13:O,
1+5S*0.2<r<1+S*04
RI+R!=0, Ry +R’ =0,
=y Cys +; Cys +5 Cyy
Q; +Q/ =0, Q; +Q’ =0,
1+S*04<r<1+S*0.6
Q; +Q’ =0, Q; +Q =0
:‘//14 Csy ‘H//; Cis ‘H//; Cis
S;+S2=0, SZ+5S)=0, 1+S*0.6<r<1+S*0.8
S3+5S; =0, S, +S7 =0,  (3.16) =yBC+yiCy+yiC,

1+S*0.8<r<1+S
u(r) = Wll u, + ‘//;1 Uy, + W; U,
1<r<1+S5*0.2

5. SOLUTION OF THE PROBLEM

Solving these coupled global matrices for temperature,
concentration and velocity (3.13)-(3.15) respectively and using the
iteration procedure we determine the unknown global nodes ) ) )
through which the temperature, concentration and velocity at =W U+, Uy +Ws Ugg
different radial intervals at any arbitrary axial cross sections are 1+S*02<r<1+S*04
obtained. The respective expressions are given by

3 3 3
=W, Cs T, C t; Cpy

o(r) = '//11 0, + ‘//;1 0, + '//31‘ 0,3
1+S*04<r<1+S*0.6

1<r<1+S*0.2
=W12013+‘//22‘914+'//32915 :‘//14U17+W;u18+‘//;u19
1+S*06<r<1+S*0.8
1+S*0.2<r<1+S*04

:‘//115 Ujg ‘H//zs Uy +W§ Usy
1+S*0.8<r<1+S

6. SHEAR STRESS, NUSSELT NUMBER AND
1+S*04<r<1+S5*0.6 SHERWOOD NUMBER

:'//13 05 +‘//23 O ‘H//; 0,

_ 4 4 4 The shear stress (1) is evaluated using the formula
=y, O +y, O + 3 Oy

1+5*0.6<r<1+5*0.8 du

= (E) r=1,1+s

_ .15 5 5
=y O+, Oy +y3 0y
The rate of heat transfer (Nusselt number) is evaluated using the

1+S*0.8<r<1+S de
formula Nu :—(d—),:ll+s
et
C(r) :‘//11 C, +W§1 Cp,+ l//; Ci
1<r<1+S5*0.2

The rate of mass transfer (Sherwood number) is evaluated using

dC
the formula Sh=—( W) relles
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7. DISCUSSION OF THE NUMERICAL RESULTS

In this analysis we investigate the effect of chemical
reaction and radiation absorption on convective heat and mass
transfer flow of a viscous electrically conducting fluid through a
porous medium in a circular annular region between the two porous
cylinders r = a and r = b. The equations governing flow, heat and
mass transfer are solved by using Gauss-Seidel iteration method.

The axial velocity (w) is shown in figs. (1-6) for different
variations, G, D™, a, N, Sc, y and Q;. Fig. (1) represents w with
Grashof number G. The actual axial flow is in the direction of
gravitational field. W>0 represents a reversal flow. It is found that
w exhibits a reversal flow for G<0 and the region of reversal flow
enlarges with |G| with maximum occurring at r = 1.6. Fig. (2)
represents w with D™ and M. It is found that lesser the permeability
of the porous medium lesser is |w| in the flow region. |w|
experiences an enhancement with M<4 and reduces with higher
M>6. An increase in the strength of the heat source results in a
depreciation in |w|. The variation of w with buoyancy ratio N shows
that when the molecular buoyancy force dominates over the thermal
buoyancy force |w| enhances and when the buoyancy forces are in
the same direction and for the forces acting in opposite directions
|w| depreciates in the entire flow region fig. (3). The variation of w
with Sc shows that |w| depreciates with Sc. Thus lesser the
molecular diffusivity smaller is |w] in the flow region. The variation
of w with chemical reaction parameter shows that |w| depreciates in
the degenerating chemical reaction case and enhances in the
generating chemical reaction case as shown in fig. (4). An increase
in the radiation absorption parameter Q, results in an enhancement
in |w| as presented in fig. (5).

The non-dimensional temperature () is shown in figs. (6-
10) for different parametric values. We assume that the outer
cylinder is at a higher temperature than the inner cylinder (m=2).
Fig. (6) represents the variation of 6 with Grashof number G. It is
found that the actual temperature depreciates with increase in |G|.
The variation of 0 with D" and M shows that lesser the
permeability of the porous medium larger is the actual temperature.
Higher the Lorentz force lesser the actual temperature in the flow
region fig. (7). An increase in the strength of the heat source
results in a depreciation of the actual temperature. When the
molecular buoyancy force dominates over the thermal buoyancy
force the actual temperature depreciates irrespective of the
directions of the buoyancy forces as seen in fig. (8). With reference
to Sc we find that lesser the molecular diffusivity smaller is the
actual temperature. Also the actual temperature enhances in the
generating chemical reaction case and depreciates in the
degenerating chemical reaction case as observed from fig. (9).
From fig. (10) we find that the actual temperature enhances with
increase in the radiation absorption parameter Q;.

The non-dimensional concentration (C) is shown in fig.
(11) for different values of Sc and y. It is found that lesser the
molecular diffusivity smaller is the actual concentration. Also the
actual concentration depreciates in the degenerating chemical
reaction case and enhances in the generating chemical reaction
case.

The shear stress (t) on the inner and outer cylinders is
shown in tables (1-8) for different values of G, D™, Sc, a, N, y and
Q. It is found that the stress enhances with |G| on both the
cylinders. Lesser the permeability of the porous medium/higher the
Lorentz force smaller is the stress on the boundaries. We find that
the stress reduces with increase in the Schmidt number (Sc) tables
(1 & 2). The stress depreciates with increase in the strength of the
heat generating source. When the molecular buoyancy force
dominates over the thermal buoyancy force the stress experiences
depreciation irrespective of the directions of the buoyancy forces
tables (3 & 4). With respect to the chemical reaction parameter y we
find that the stress depreciates in the degenerating chemical
reaction case and enhances in the generating chemical reaction case
tables (5 & 6). An increase in Q; leads to an enhancement in |t| at
both the cylinders as observed from tables (7 & 8).

The rate of heat transfer (Nu) at r = 1 & 2 is shown in
tables (9-16) for different parametric values. It is found that the rate
of heat transfer depreciates at r=1 and enhances at r = 2 with
increase in G, M, D, and A. Thus lesser the permeability of the
porous medium/higher Lorentz force, smaller |Nu| at r = 1 and
larger |z at r = 2. Lesser the molecular diffusivity, smaller [Nul| is at
r=1 and larger at r=2 tables (9 & 10). The variation of Nu with heat
source parameter a. shows that Nu at r = 1 reduces with a<4 and
enhances with higher a>6 while at r = 2, it enhances with o. The
rate of heat transfer enhances at r = 1 and depreciates at r = 2 with
increase in |N| irrespective of the directions of the buoyancy forces
tables (11 & 12). The Nusselt number at r = 1 depreciates and that
at r = 2 enhances in the degenerating chemical reaction case while
in the generating case it enhances on r = 1 and reduces on r = 2
tables (13 & 14). The Nusselt number on r = 1 enhances with
increase in the radiation absorption parameter Q; while on r =2, it
reduces with Q,<2 and enhances with Q>4 tables (15 & 16).

The rate of mass transfer (Sh) depreciates on r = 1 and
enhances on r=2 in the degenerating chemical reaction case and in
the generating chemical reaction case it enhances on r=1 and
reduces on r = 2 tables (17 & 18).
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Table—1 Shear Stress (t)atr=1
G [ I n v
10° -6.0918 | -4.60078 | -3.321090 | -4.34937
3x10° | -18.38389 | -14.15038 | -10.19514 | -13.27044
-10° 6.00918 | 4.60078 3.32190 | 4.34937
-3x10° | 18.38389 | 14.15038 | 10.19514 | 13.27044
M 2 4 6 2
D" 10° 10° 10° 2x10°
Sc 1.3 1.3 1.3 1.3
v Vi VI Vil
-3.47856 -3.03905 -3.02403 -2.96897
-10.57694 -6.09571 -6.06550 -5.95584
3.47856 3.03905 3.02403 -2.6754
10.57694 6.09571 6.0550 5.95584
2 2 2 2
3x10° 10° 10° 10°
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1.3 0.24 0.6 2.01
Table - 2 Shear Stress (t) atr =2
G I I I v
10 | 8.17166 | 7.18271 | 6.12502 | 6.30307
3x10° | 25.06599 | 22.18817 | 18.93278 | 19.28109
-10° | -8.17166 | -7.18271 | -6.12502 | -6.30307
3x-102 25.0-6594 22.1;5817 18.9-3.278 19.2;3109
M 2 4 6 2
D' 10° 10° 10° 2x10
Sc 1.3 1.3 1.3 1.3
% VI Vil Vil
5.25561 4.14145 4.11884 4.03220
16.02143 8.30424 8.25877 8.08524
-5.25561 -4.14145 | -4.11884 | -3.99877
-16.02143 | -8.30424 | -8.25877 | -8.08524
2 2 2 2
3x10° 10 10° 10°
1.3 0.24 06 2.01
Table—3 Shear Stress (t)atr=1
G I I I
10 -6.00918 -5.67188 -5.42206
3x10° -18.38389 | -17.27394 | -16.46429
-10° 6.00918 5.67188 5.42206
-3x10° 18.38389 17.27394 16.46429
o 2 4 6
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N 1 1 1 3x10° -6.05983 -5.96070 -5.82618 -5.63142
-10° 3.02122 2.97138 2.90453 2.80755
[ T n
-3x10° 6.05983 5.96070 5.82618 5.63142
-4.51565 -0.71735 -0.26185
y 0.3 0.5 1.5 2.5
-9.06293 -1.44271 -0.53126
4.51565 0.71735 0.26185
\ Vi Vi VIII
9.06293 1.44271 0.53126
-3.10278 -3.13229 -3.26506 -3.47125
2 2 2
-6.22396 -6.28336 -6.55023 -6.96535
2 -0.5 -0.8
3.10278 3.13229 3.26506 3.47125
Table—4 Shear Stress (t) atr=2 6.22396 6.28336 6.55023 6.96535
G [ T n
-0.3 -0.5 -1.5 -2.5
10° 8.17166 7.70519 7.35129
3x10° 25.06599 23.52506 22.37444
. Table—6 Shear Stress (t) atr=2
-10 -8.17166 -7.70519 -7.35129
G I ] 1] v
-3x10° -25.06599 | -23.52506 | -22.37444 10” 4.11005 4.04192 3.94918 3.81380
o 2 4 6 3x10° 8.24115 8.10473 7.91817 7.64612
N 1 1 1 -10° -4.11005 | -4.04192 | -3.94918 | -3.81380
-3x10° -8.24115 -8.10473 -7.91817 -7.64612
v Vv VI
y 0.3 0.5 1.5 2.5
6.13833 0.98344 0.36540
12.31941 1.97210 0.73525
\ VI Vi VIII
-6.13833 -0.98344 -0.36540
4.22195 4.26227 4.44235 4.71955
-12.31940 -1.97210 -0.73525
8.46629 8.54744 8.90970 9.46787
2 2 2
-4.22195 -4.26227 -4.44235 -4.71955
2 -0.5 -0.8
-8.46629 -8.54744 -8.90970 -9.46787
Table -5 Shear Stress (t)atr=1 -0.3 -0.5 -1.5 -2.5
G I 1l 11 v
10° -3.02122 -2.97138 -2.90453 -2.80755 Table -7 Shear Stress (t)atr=1
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G | I Il v
10° - B B _
2.97096 | 3.12030 | 3.31887 | 3.51754
3x10° B B _ _
5.95985 | 6.25922 | 6.65891 | 7.05853
-10° | 2.97096 | 3.12030 | 3.31887 | 3.51754
. 5.95985 | 6.25922 | 6.65891 2 05853
3x10
Q; 0.5 2 4 6
Table -8 Shear Stress (t)atr=2
G | I Il v
10° | 4.04201 | 4.24537 | 4.51622 | 4.78718
3x10° | 8.10491 | 8.51341 | 9.05860 | 9.60398
-10° - - - -
4.04201 | 4.24537 | 4.51622 | 4.78718
3x110° | 8.10491 | 8.51341 | 9.05860 | 9.60398
Q; 0.5 2 4 6
Table -9 Nusselt number (Nu)atr=1
G | ] 11 \V4
10° 0.59175 0.56355 0.54592 0.57703
3x10° 0.48243 0.27736 0.20037 0.39073
-10° 0.59175 0.56355 0.54592 0.57703
-3x10° 0.48243 0.27736 0.20037 0.39073
M 2 4 6 2
D' 10° 10° 10° 2x10°
Sc 1.3 1.3 1.3 1.3
\Y Vi VII VI

210
0.57222 0.61838 0.61265 0.59175
0.38831 0.60770 0.60213 0.58179
0.57222 0.61838 0.61265 0.589765
0.38831 0.60770 0.60213 0.58179
2 2 2 2
3x10° 10° 10° 10°
1.3 0.24 0.6 2.01
Table — 10 Nusselt number (Nu) atr =2
G | 1l 1l v
10° 0.97953 1.00740 1.02471 0.98918
3x10° 1.21358 1.43730 1.54759 1.27769
-10° 0.97953 1.00740 1.02471 0.98918
-3x10° 1.21358 1.43730 1.54759 1.27769
M 2 4 6 2
D’ 10° 10° 10° 2x10°
Sc 13 1.3 1.3 1.3
\% \| VIl VIl
0.99015 0.93807 0.94479 0.97030
1.26354 0.96081 0.96725 0.99172
0.99015 0.93807 0.94479 96.0345
1.26354 0.96081 0.96725 0.99172
2 2 2 2
3x10° 10 10 10
1.3 0.24 0.6 2.01
Table — 11 Nusselt number (Nu)atr=1
G | 1l 1l
10° 0.59175 -0.37042 -1.10500
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3x10° 0.48243 -0.42164 -1.12281
-10° 0.59179 -0.37042 -1.10500
-3x10° 0.48243 -0.42164 -1.12281
o 2 4 6
N 1 1 1
\Y \% VI
0.59764 0.60520 0.60537
0.57434 0.60463 0.60530
0.59764 0.60520 0.60537
0.57434 0.60463 0.60530
2 2 2
2 -0.5 -0.8

Table — 12 Nusselt number (Nu) atr =2

G | I Il
10° 0.97953 2.11236 3.03342
3x10° 1.21358 2.27379 3.15007
-10° 0.97953 2.11236 3.03342
-3x10° 1.21358 2.27379 .15007
o 2 4 6
N 1 1 1
\Y \% VI
0.96689 0.95073 0.95037
1.01671 0.95198 0.95053
0.96689 0.95073 0.95037
1.01671 0.95198 0.95053
2 2 2
2 -0.5 -0.8
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Table — 13 Nusselt number (Nu)atr=1
G [ I 0T v
10° 0.61155 0.59277 0.56716 0.53015
3x10° 0.60106 0.58276 0.55780 | 0.52169
-10° 0.61155 0.59277 0.56716 0.53015
-3x10° | 0.60106 0.58276 0.55780 | 0.52169
Y 0.3 0.5 15 25
V Vi VIl Vi
0.64276 0.65405 0.70504 0.78365
0.63145 0.64243 0.69199 0.76825
0.64276 0.654050 0.70504 0.78365
0.63145 0.64243 0.69199 0.76825
-0.3 -0.5 -1.5 -2.5
Table — 14 Nusselt number (Nu) atr =2
G 1l 11 v
10° 0.94709 0.96777 0.99608 1.03727
3x10° 0.96947 0.98925 1.01636 1.05586
-10° 0.94709 0.96777 0.99608 1.03727
-3x10° 0.96947 0.98925 1.01636 1.05586
Y 0.3 0.5 15 25
V Vi VIl VI
0.91287 0.90054 0.84524 0.76034
0.93680 0.92504 0.87237 0.79183
0.91287 0.90054 0.84524 0.76034
0.93680 0.42504 0.87237 0.79183
-0.3 -0.5 -1.5 -2.5
Table— 15 Nusselt number (Nu) atr =1
| 6 [ 1 n | m [ v
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10 | 0.3271 | 1.17948 | 2.31515 | 3.45098
3x107 | 0.31780 | 1.16800 | 2.30154 | 3.43509
-107 | 0.32781 | 1.17948 | 2.31515 | 3.45098
3x-1 . 031780 | 1.16800 | 230154 | , o0 o
Q. 05 2 4 6

Table — 16 Nusselt number (Nu)atr=1

G [ Il 1 IV
107 | 1.26891 | 0.30316 - -
0.98449 | 2.27221
3x107 | 1.29039 | 0.32741 - -
0.95628 | 2.23976
-107 | 1.26891 | 0.30316 - -
0.98449 | 2.27221
-~ | 1.29039 | 0.32741 - -
3x10° 0.95628 | 2.23976
o} 05 2 4 6

Table - 17 Sherwood number (Sh)atr =1

212
-0.3 -0.5 -1.5 -2.5
Table — 18 Sherwood number (Sh) atr =2
Sc | I 1l v
0.24 0.80255 1.09567 1.50414 2.11563
0.6 0.6255 1.02337 1.3480 2.0569
1.3 0.5255 0.89765 1.2518 2.0056
2.01 0.3899 0.78654 1.2112 1.89763
y 0.3 0.5 15 25
Y, \| VIl Vil
0.32633 0.15689 -0.58570 -1.69652
0.306778 0.1387 -0.4570 -1.5958
0.287659 0.1183 -0.58570 -1.3959
0.223567 0.0981 -0.58570 -1.11233
-0.3 -0.5 -1.5 -2.5
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