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FINITE ELEMEMT ANALYSIS OF NON-DARCY 
MIXED CONVECTIVE HEAT AND MASS 

TRANSFER IN A CIRCULAR ANNULUS WITH 
RADIATION ABSORPTION 

P.Sriveni1                       Prof.A.Leelarathnam2 
 Abstract: In this chapter we discuss the free and forced convection flow through a porous medium in a co-axial cylindrical duct where the 

boundaries are maintained at constant temperature and concentration.  The Brinkman Forchhimer extended Darcy equations which take into account the 
boundary and inertia effects are used in the governing linear momentum equations.  The effect of density variation is confined to the buoyancy term under 
Boussinesq approximation.   

Index Terms: Radiation Absorption, chemical reaction. 

——————————      ——————————
1. INTRODUCTION 

Transport phenomena involving the combined influence 
of thermal and concentration buoyancy are often encountered in 
many engineering systems and natural environments.  There are 
many applications of such transport processes in the industry, 
notably in chemical distilleries, heat exchangers, solar energy 
collectors and thermal protection systems.  In all such classes of 
flows, the driving force is provided by a combination of thermal 
and chemical diffusion effects.  In atmosphere flows, thermal 
convection of the earth by sunlight is affected by differences in 
water vapour concentration. This buoyancy driven convection due 
to coupled heat and mass transfer in porous media has also many 
important applications in energy related engineering. These include 
moisture migration, fibrous insulation, spreading of chemical 
pollution in saturated soils, extraction of geothermal energy and 
underground disposal of natural waste.   

The increasing cost of energy has led technologists to 
examine measures which could considerably reduce the usage of 
the natural source energy.  Thermal insulations will continue to find 
increased use as engineers seek to reduce cost.  Heat transfer in the 
porous thermal insulation within vertical cylindrical annuli provide 
us insight into the mechanism of energy transport and enable 
engineers to use insulation more efficiently.  In particular, design 
engineers require relationships between heat transfer, geometry and 
boundary conditions which can be utilized in cost –benefit analysis 
to determine the amount of insulation that will yield the maximum 
investment.  Apart from this, the study of flow and heat transfer in 
the annular region between the concentric cylinders has 
applications in nuclear waste disposal research.  It is known that 
canisters filled with radioactive rays be buried in earth so as to 
isolate them from human population and it is of interest to 
determine the surface temperature of these canisters.  This surface 
temperature strongly depends on the buoyancy driven flows 
sustained by the heated surface and the possible moment of ground 
water past it.  This phenomenon is ideal to the study of convection 
flow in a porous medium contained in a cylindrical annulus (15, 16, 
17). 

Free convection in a vertical porous annulus has been 
extensively studied by Prasad (15), Prasad and Kulacki (16) and 
Prasad et al. (17) both theoretically and experimentally.  
Caltagirone (3) has published a detailed theoretical study of free 
convection in a horizontal porous annulus including possible three 
dimensional and transient effects.  Convection through annulus 
region under steady state conditions has also been discussed with 
two cylindrical surfaces kept at different temperatures (7).  This 
work has been extended in temperature dependent convection flow 
(5, 6, 7)as well as convection flows through horizontal porous 
channel whose inner surface is maintained at constant temperature 
while the other surface is maintained at circumferentially varying 
sinusoidal temperature (10, 19, 27).   

Free convection flow and heat transfer in hydromagnetic 
case is important in nuclear and space technology (7, 11, 14, 22, 29, 
30).  In particular, such convection flow in a vertical annulus region 
in the presence of radial magnetic field has been studied by Sastri 
and Bhadram (20).  Nanda and Purushotham ( 8) have analysed the 
free convection of a thermal conducting viscous incompressible 
fluid induced by travelling thermal waves on the circumference of a 
long vertical circular cylindrical pipe.  Whitehead (28) and  Neeraja 
(9) have  made a study of the fluid flow and heat transfer in a 
viscous incompressible fluid confined in an annulus bounded by 
two rigid cylinders.  The flow is generated by periodical travelling 
waves imposed on the outer cylinder and the inner cylinder is 
maintained at constant temperature.   

Chen and Yuh (4) have investigated the heat and mass 
transfer characteristics of natural convection  flow along a vertical 
cylinder under the combined buoyancy effects of thermal and 
species diffusion.  Sivanjaneya Prasad (23) has investigated the free 
convection flow of an incompressible, viscous fluid through a 
porous medium in the annulus between the porous concentric 
cylinders under the influence of a radial magnetic field. Antonio (2) 
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has investigated the laminar flow, heat transfer in a vertical 
cylindrical duct by taking into account both viscous dissipation and 
the effect of buoyancy, The limiting case of fully developed natural 
convection in porous annuli is solved analytically for steady and 
transient cases by   Sharawi and Al-Nimir (21) and Al-Nimir (1).  
Philip (13) has obtained solutions for the annular porous media 
valid for low modified Reynolds number.  Ravi (18) has analysed 
the unsteady convective heat and mass transfer through a 
cylindrical annulus with constant heat sources.  Sreevani (25) has 
studied the convective heat and mass transfer through a porous 
medium in a cylindrical annulus under radial magnetic field with 
Soret effect.  Prasad (15) has analysed the convective heat and mass 
transfer in an annulus in the presence of heat generating source 
under radial magnetic field. Reddy (24) has discussed the Soret 
effect on mixed convective heat and mass transfer through a porous 
cylindrical annulus.  For natural convection, the existence of large 
temperature differences between the surfaces is important.  Keeping 
the applications in view, Sudheer Kumar et al. (26) have studied the 
effect of radiation on natural convection over a vertical cylinder in 
a porous media. Padmavathi (12) has analyzed the convective heat 
transfer in a cylindrical annulus by using finite element method.   

 In this chapter, we discuss the free and forced convection 
flow through a porous medium in a co-axial cylindrical duct where 
the boundaries are maintained at constant temperature and 
concentration.  The Brinkman Forchhimer extended Darcy 
equations which take into account the boundary and inertia effects 
are used in the governing linear momentum equations.  The effect 
of density variation is confined to the buoyancy term under 
Boussinesq approximation.  The momentum, energy and diffusion 
equations are coupled equations.  In order to obtain a better insight 
into this complex problem, we make use of Galerkin finite element 
analysis with quadratic polynomial approximations.  The Galerkin 
finite element analysis has two important features.  The first is that 
the approximation solution is written directly as a linear 
combination of approximation functions with unknown nodal 
values as coefficients.  Secondly, the approximation polynomials 
are chosen exclusively from the lower order piecewise polynomials 
restricted to contiguous elements.  The behaviour of velocity, 
temperature and concentration is analysed at different axial 
positions.  The shear stress and the rate of heat and mass transfer 
have also been obtained for variations in the governing parameters.      
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3. FORMULATION OF THE PROBLEM 

          We consider the free and forced convection flow in a vertical 
circular annulus through a porous medium whose walls are 
maintained at  constant temperature and concentration.  The flow, 
temperature and concentration in the fluid are assumed to be fully 
developed. Both the fluid and porous regions  have constant 
physical properties and the flow is a mixed convection flow taking 
place under thermal and molecular buoyancies and uniform axial 
pressure gradient.  The Boussenissq approximation is invoked so 
that the density variation is confined to the thermal and molecular 
buoyancy forces. The Brinkman-Forchhimer-Extended Darcy 
model which accounts for the inertia and boundary effects has been 
used for the momentum equation in the porous region.  The 
momentum, energy and diffusion equations are coupled and non-
linear. Also the flow is unidirectional along the axial direction of 
the cylindrical annulus. Making use of the above assumptions the 
governing equations are 
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where u is the axial velocity in the porous region, T, C are the 
temperature and concentration of the fluid,  k is the permeability of 
porous medium,  F is a function that depends on Reynolds number, 
the microstructure of the porous medium and D1 is the  molecular 
diffusivity, β is the coefficient of the thermal expansion, β*  is the 
coefficient of volume expansion, Cp is the specific heat, ρ  is 
density and g is gravity. 

The relevant boundary conditions are  

   0=u ,         T=Ti, C= Ci   at    r = a 

  0=u ,        T=T0, C=C0    at    r = a+s                       (2.4)         

We now define the following non-dimensional variables 
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Introducing these non-dimensional variables, the governing 
equations in the non-dimensional form are (on removing the stars) 
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The corresponding non-dimensional conditions are 

0=u , 1=θ ,   C=1      at   r=1                                             
  

0=u , 0=θ ,  C=0    at    r=1+s                                   (2.8) 

For N=0 the equations (2.5) – (2.7) reduce to that of padmavathi 
(12) 

For 0=α they are in good agreement with Sudha (31) 

4. FINITE ELEMENT ANALYSIS 

The finite element analysis with quadratic polynomial 
approximation functions is carried out along the radial distance 
across the circular duct. The behaviour of the velocity,   
temperature and concentration profiles has been discussed 
computationally for different variations in governing parameters. 
The Galerkin method has been adopted in the variational 
formulation in each element to obtain the global coupled matrices 
for the velocity, temperature and concentration in course of the 
finite element analysis.   
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 Choose an arbitrary element Ek and let uk, θk  and Ck   be 
the values of u, θ and C in the element Ek

 

We define the error residuals as     
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where uk, θk  & Ck are values of u, θ & C in the  arbitrary element 
ek. These are expressed as linear combinations in terms of 
respective local nodal values.   
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Following the Galerkin weighted residual method and integrating 
by parts equations (3.1) - (3.3)  we obtain  
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Expressing uk, θk,  Ck in terms of local nodal values in (3.4) - (3.6) 
we obtain 
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Choosing different k
jψ ’s corresponding to each element ke in the 

equation (3.7) yields a local stiffness matrix of order 33×  in the 
form 
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Likewise the equations (3.8) & (3.9) give rise to stiffness matrices 
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13×  column matrices.  Such stiffness matrices (3.10) - (3.12) in 
terms of local nodes in each element are assembled using 
interelement continuity and equilibrium conditions to obtain the 
coupled global matrices in terms of the global nodal values of u , θ  
& C in the region.      

In case we choose n quadratic elements, then the global 
matrices are of order 2n+1. The ultimate coupled global matrices 
are solved to determine the unknown global nodal values of the 
velocity, temperature and concentration in fluid region. In solving 
these global matrices an iteration procedure has been adopted to 
include the boundary  effects in the porous medium.     

In fact, the non-linear term arises in the modified 
Brinkman linear momentum equation (3.4) of the porous medium. 
The iteration procedure in taking the global  matrices is  as follows.  
We split the square term into a product term and keeping one of 
them say Ui’s under  integration,  the other is expanded in terms of 
local nodal values as in  (3.7),  resulting in the corresponding 
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the unknown ui’s . To evaluate (3.10), to begin with, choose the 
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first order approximation calculate θ i’s,  Ci’s. In the second 
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approximation. This procedure is repeated till the consecutive 
values of ui’s, θi’s and Ci’s differ by a preassigned percentage.      
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The global matrix for θ   is    
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The global matrix for C is    
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The global matrix for u is  
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(The details of  11e  etc.,  11h  et., 1
uF etc., 1

θF  etc., 1
cF are given 

in the appendix).   
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The equilibrium conditions are  

02
1

1
3 =+ RR ,   03

1
2
3 =+ RR ,  

04
1

3
3 =+ RR ,    05

1
4
3 =+ RR ,  

02
1

1
3 =+ QQ ,    03

1
2
3 =+QQ ,  

04
1

3
3 =+QQ ,     05

1
4
3 =+QQ ,     

02
1

1
3 =+ SS ,              03

1
2
3 =+ SS ,  

04
1

3
3 =+ SS ,  05

1
4
3 =+ SS ,          (3.16) 

5. SOLUTION OF THE PROBLEM 

  Solving these coupled global matrices for temperature, 
concentration and velocity (3.13)-(3.15) respectively and using the 
iteration procedure we determine the unknown global nodes 
through which the temperature, concentration and velocity at 
different radial intervals at any arbitrary axial cross sections are 
obtained.  The respective expressions are given by 

13
1
312

1
2111

1
1)( θψθψθψθ ++=r  

 2.0*11 Sr +≤≤                   

15
2
314

2
213

2
1 θψθψθψ ++=

4.0*12.0*1 SrS +≤≤+  

17
3
316

3
215

3
1 θψθψθψ ++=

6.0*14.0*1 SrS +≤≤+  

19
4
318

4
217

4
1 θψθψθψ ++=

8.0*16.0*1 SrS +≤≤+  

21
5
320

5
219

15
1 θψθψθψ ++=  

SrS +≤≤+ 18.0*1  

    13
1
312

1
2111

1
1)( CCCrC ψψψ ++=  

 2.0*11 Sr +≤≤             

15
2
314

2
213

2
1 CCC ψψψ ++=

4.0*12.0*1 SrS +≤≤+  

 17
3
316

3
215

3
1 CCC ψψψ ++=

   

6.0*14.0*1 SrS +≤≤+  

 19
4
318

4
217

4
1 CCC ψψψ ++=         

8.0*16.0*1 SrS +≤≤+  

 21
5
320

5
219

15
1 CCC ψψψ ++=   

SrS +≤≤+ 18.0*1       

13
1
312

1
2111

1
1)( uuuru ψψψ ++=    

2.0*11 Sr +≤≤  

             15
2
314

2
213

2
1 uuu ψψψ ++=    

4.0*12.0*1 SrS +≤≤+  

 17
3
316

3
215

3
1 ccc ψψψ ++=

6.0*14.0*1 SrS +≤≤+  

 19
4
318

4
217

4
1 uuu ψψψ ++=

8.0*16.0*1 SrS +≤≤+  

 21
5
320

5
219

15
1 uuu ψψψ ++=    

SrS +≤≤+ 18.0*1  

6. SHEAR STRESS, NUSSELT NUMBER AND 
SHERWOOD NUMBER 

      The shear stress ( τ ) is evaluated using the formula 

srdr
du

+== 1,1)(τ  

      The rate of heat transfer (Nusselt number) is evaluated using the 

formula srdr
dNu +=−= 1,1)( θ

 

      The rate of mass transfer (Sherwood number) is evaluated using 

the formula srdr
dCSh +=−= 1,1)(  
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7. DISCUSSION OF THE NUMERICAL RESULTS 
In this analysis we investigate the effect of chemical 

reaction and radiation absorption on convective heat and mass 
transfer flow of a viscous electrically conducting fluid through a 
porous medium in a circular annular region between the two porous 
cylinders r = a and r = b. The equations governing flow, heat and 
mass transfer are solved by using Gauss-Seidel iteration method. 

 The axial velocity (w) is shown in figs. (1-6) for different 
variations, G, D-1, α, N, Sc, γ and Q1. Fig. (1) represents w with 
Grashof number G. The actual axial flow is in the direction of 
gravitational field. W>0 represents a reversal flow. It is found that 
w exhibits a reversal flow for G<0 and the region of reversal flow 
enlarges with |G| with maximum occurring at r = 1.6. Fig. (2) 
represents w with D-1 and M. It is found that lesser the permeability 
of the porous medium lesser is |w| in the flow region. |w| 
experiences an enhancement with M≤4 and reduces with higher 
M≥6. An increase in the strength of the heat source results in a 
depreciation in |w|. The variation of w with buoyancy ratio N shows 
that when the molecular buoyancy force dominates over the thermal 
buoyancy force |w| enhances and when the buoyancy forces are in 
the same direction and for the forces acting in opposite directions 
|w| depreciates in the entire flow region fig. (3). The variation of w 
with Sc shows that |w| depreciates with Sc. Thus lesser the 
molecular diffusivity smaller is |w| in the flow region. The variation 
of w with chemical reaction parameter shows that |w| depreciates in 
the degenerating chemical reaction case and enhances in the 
generating chemical reaction case as shown in fig. (4). An increase 
in the radiation absorption parameter Q1 results in an enhancement 
in |w| as presented in fig. (5). 

 The non-dimensional temperature (θ) is shown in figs. (6-
10) for different parametric values. We assume that the outer 
cylinder is at a higher temperature than the inner cylinder (m=2). 
Fig. (6) represents the variation of θ with Grashof number G. It is 
found that the actual temperature depreciates with increase in |G|. 
The variation of θ with D-1 and M shows that lesser the 
permeability of the porous medium larger is the actual temperature. 
Higher the Lorentz force lesser the actual temperature in the flow 
region     fig. (7). An increase in the strength of the heat source 
results in a depreciation of the actual temperature. When the 
molecular buoyancy force dominates over the thermal buoyancy 
force the actual temperature depreciates irrespective of the 
directions of the buoyancy forces as seen in fig. (8). With reference 
to Sc we find that lesser the molecular diffusivity smaller is the 
actual temperature. Also the actual temperature enhances in the 
generating chemical reaction case and depreciates in the 
degenerating chemical reaction case as observed from fig. (9). 
From fig. (10) we find that the actual temperature enhances with 
increase in the radiation absorption parameter Q1. 

The non-dimensional concentration (C) is shown in fig. 
(11) for different values of Sc and γ. It is found that lesser the 
molecular diffusivity smaller is the actual concentration. Also the 
actual concentration depreciates in the degenerating chemical 
reaction case and enhances in the generating chemical reaction 
case. 

The shear stress (τ) on the inner and outer cylinders is 
shown in tables (1-8) for different values of G, D-1, Sc, α, N, γ and 
Q1. It is found that the stress enhances with |G| on both the 
cylinders. Lesser the permeability of the porous medium/higher the 
Lorentz force smaller is the stress on the boundaries. We find that 
the stress reduces with increase in the Schmidt number (Sc) tables 
(1 & 2). The stress depreciates with increase in the strength of the 
heat generating source. When the molecular buoyancy force 
dominates over the thermal buoyancy force the stress experiences 
depreciation irrespective of the directions of the buoyancy forces 
tables (3 & 4). With respect to the chemical reaction parameter γ we 
find that the stress depreciates in the degenerating chemical 
reaction case and enhances in the generating chemical reaction case 
tables (5 & 6). An increase in Q1 leads to an enhancement in |τ| at 
both the cylinders as observed from tables (7 & 8). 

The rate of heat transfer (Nu) at r = 1 & 2 is shown in 
tables (9-16) for different parametric values. It is found that the rate 
of heat transfer depreciates at r=1 and enhances at r = 2 with 
increase in G, M, D-1, and λ. Thus lesser the permeability of the 
porous medium/higher Lorentz force, smaller |Nu| at r = 1 and 
larger |τ| at r = 2. Lesser the molecular diffusivity, smaller |Nu| is at 
r=1 and larger at r=2 tables (9 & 10). The variation of Nu with heat 
source parameter α shows that Nu at r = 1 reduces with α≤4 and 
enhances with higher α≥6 while at r = 2, it enhances with α. The 
rate of heat transfer enhances at r = 1 and depreciates at r = 2 with 
increase in |N| irrespective of the directions of the buoyancy forces 
tables (11 & 12). The Nusselt number at r = 1 depreciates and that 
at  r = 2 enhances in the degenerating chemical reaction case while 
in the generating case it enhances on r = 1 and reduces on r = 2 
tables (13 & 14). The Nusselt number on r = 1 enhances with 
increase in the radiation absorption parameter Q1 while on r =2, it 
reduces with Q1≤2 and enhances with Q1≥4 tables (15 & 16). 

The rate of mass transfer (Sh) depreciates on r = 1 and 
enhances on r=2 in the degenerating chemical reaction case and in 
the generating chemical reaction case it enhances on r=1 and 
reduces on r = 2 tables (17 & 18).   
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Fig. 1: Variation of w with G    Fig. 2 : Variation of w with D-1,   

          I    II   III  IV     V     VI   I    II   III   IV    V    VI 

G   102   2x102   3x102     -102  -2x102 -3x102 D-1   102  2x102 3x102 5x102  102  102 

    M     2  2   2  2  4       6 

-6

-5

-4

-3

-2

-1

0
1 1.2 1.4 1.6 1.8 2

r

w

I

II

III

IV

V

 

  Fig. 3 : Variation of w with α, N 

             I    II III IV    V 

  α 2    4 6 2      2    

  N 1    1 1 2    -0.5                                             
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Fig. 4 : Variation of w withSc, γ 

  I    II     III       IV   V    VI    VII   VIII 

Sc 0.6    1.3  2.01 1.3  1.3  1.3     1.3  1.3 

γ 0.5    0.5    0.5   1     2    -0.5    -1     -2  
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Fig.5:Variation of w with 

             I      II     III IV    V  VI 

Q1 0     0.5   1.5 2      4    6 
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Fig. 6 : Variation of θ with G 

I     II         III         IV    V   VI 

   G  102  2x102  3x102  -102  -2x102  -3x102 
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Fig. 7: Variation of θ with D-1, M 

         I    II  III IV      V      VI 

D-1   102  2x102 3x102 5x102  102   102          

M     2      2    2   2      4        6            
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Fig. 8 : Variation of θ with α, N 

     I        II          III IV V 

α     2 4 6 2 2 

N     1 1 1 2       -0.5 
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Fig. 9 : Variation of θ with Sc, γ  

         I      II     III     IV    V    VI    VII   VIII  

Sc  0.6  1.3   2.01  1.3   1.3   1.3    1.3   1.3  

γ     0.5  0.5   0.5     1      2    -0.5  -1     -2  
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Fig. 10 : Variation of θ with Q1 

            I   II      III     IV  V 

Q1      0  0.5    1.5     2  4 
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Fig.11: Variation of C with Sc, γ 

           I     II    III     IV   V     VI      VII   VIII 

   Sc  0.6    1.3  2.01  1.3  1.3   1.3  1.3     1.3 

   γ    0.5    0.5   0.5     1 2  -0.5   -1      -2  

Table – 1   Shear Stress (τ) at r = 1 
G I II III IV 

102 -6.0918 -4.60078 -3.321090 -4.34937 

3x102 -18.38389 -14.15038 -10.19514 -13.27044 

-102 6.00918 4.60078 3.32190 4.34937 

-3x102 18.38389 14.15038 10.19514 13.27044 

M 2 4 6 2 

D-1 102 102 102 2x102 

Sc 1.3 1.3 1.3 1.3 

 

V VI VII VIII 

-3.47856 -3.03905 -3.02403 -2.96897 

-10.57694 -6.09571 -6.06550 -5.95584 

3.47856 3.03905 3.02403 -2.6754 

10.57694 6.09571 6.0550 5.95584 

2 2 2 2 

3x102 102 102 102 

1.3 0.24 0.6 2.01 

 

Table – 2        Shear Stress (τ) at r = 2 
G I II III IV 

102 8.17166 7.18271 6.12502 6.30307 

3x102 25.06599 22.18817 18.93278 19.28109 

-102 -8.17166 -7.18271 -6.12502 -6.30307 

-
3x102 

-
25.06594 

-
22.18817 

-
18.93278 

-
19.28109 

M 2 4 6 2 

D-1 102 102 102 2x102 

Sc 1.3 1.3 1.3 1.3 

 
V VI VII VIII 

5.25561 4.14145 4.11884 4.03220 

16.02143 8.30424 8.25877 8.08524 

-5.25561 -4.14145 -4.11884 -3.99877 

-16.02143 -8.30424 -8.25877 -8.08524 

2 2 2 2 

3x102 102 102 102 

1.3 0.24 06 2.01 

 
Table – 3    Shear Stress (τ) at r = 1 

G I II III 

102 -6.00918 -5.67188 -5.42206 

3x102 -18.38389 -17.27394 -16.46429 

-102 6.00918 5.67188 5.42206 

-3x102 18.38389 17.27394 16.46429 

α 2 4 6 
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N 1 1 1 

 
I II III 

-4.51565 -0.71735 -0.26185 

-9.06293 -1.44271 -0.53126 

4.51565 0.71735 0.26185 

9.06293 1.44271 0.53126 

2 2 2 

2 -0.5 -0.8 

 
Table – 4    Shear Stress (τ) at r = 2 

G I II III 

102 8.17166 7.70519 7.35129 

3x102 25.06599 23.52506 22.37444 

-102 -8.17166 -7.70519 -7.35129 

-3x102 -25.06599 -23.52506 -22.37444 

α 2 4 6 

N 1 1 1 

 
IV V VI 

6.13833 0.98344 0.36540 

12.31941 1.97210 0.73525 

-6.13833 -0.98344 -0.36540 

-12.31940 -1.97210 -0.73525 

2 2 2 

2 -0.5 -0.8 

 
Table – 5  Shear Stress (τ) at r = 1 

G I II III IV 

102 -3.02122 -2.97138 -2.90453 -2.80755 

3x102 -6.05983 -5.96070 -5.82618 -5.63142 

-102 3.02122 2.97138 2.90453 2.80755 

-3x102 6.05983 5.96070 5.82618 5.63142 

γ 0.3 0.5 1.5 2.5 

 
V VI VII VIII 

-3.10278 -3.13229 -3.26506 -3.47125 

-6.22396 -6.28336 -6.55023 -6.96535 

3.10278 3.13229 3.26506 3.47125 

6.22396 6.28336 6.55023 6.96535 

-0.3 -0.5 -1.5 -2.5 

 

Table – 6      Shear Stress (τ) at r = 2 
G I II III IV 

102 4.11005 4.04192 3.94918 3.81380 

3x102 8.24115 8.10473 7.91817 7.64612 

-102 -4.11005 -4.04192 -3.94918 -3.81380 

-3x102 -8.24115 -8.10473 -7.91817 -7.64612 

γ 0.3 0.5 1.5 2.5 

 
V VI VII VIII 

4.22195 4.26227 4.44235 4.71955 

8.46629 8.54744 8.90970 9.46787 

-4.22195 -4.26227 -4.44235 -4.71955 

-8.46629 -8.54744 -8.90970 -9.46787 

-0.3 -0.5 -1.5 -2.5 

 
Table –7    Shear Stress (τ) at r = 1 
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G I II III IV 
102 -

2.97096 
-

3.12030 
-

3.31887 
-

3.51754 

3x102 -
5.95985 

-
6.25922 

-
6.65891 

-
7.05853 

-102 2.97096 3.12030 3.31887 3.51754 

-
3x102 

5.95985 6.25922 6.65891 7.05853 

Q1 0.5 2 4 6 

 

Table –8    Shear Stress (τ) at r = 2 
G I II III IV 

102 4.04201 4.24537 4.51622 4.78718 

3x102 8.10491 8.51341 9.05860 9.60398 

-102 -
4.04201 

-
4.24537 

-
4.51622 

-
4.78718 

-
3x1102 

-
8.10491 

-
8.51341 

-
9.05860 

-
9.60398 

Q1 0.5 2 4 6 

 
Table –9    Nusselt number (Nu) at r = 1 

G I II III IV 

102 0.59175 0.56355 0.54592 0.57703 

3x102 0.48243 0.27736 0.20037 0.39073 

-102 0.59175 0.56355 0.54592 0.57703 

-3x102 0.48243 0.27736 0.20037 0.39073 

M 2 4 6 2 

D-1 102 102 102 2x102 

Sc 1.3 1.3 1.3 1.3 

 
V VI VII VIII 

0.57222 0.61838 0.61265 0.59175 

0.38831 0.60770 0.60213 0.58179 

0.57222 0.61838 0.61265 0.589765 

0.38831 0.60770 0.60213 0.58179 

2 2 2 2 

3x102 102 102 102 

1.3 0.24 0.6 2.01 

 

Table – 10   Nusselt number (Nu) at r = 2 
G I II III IV 

102 0.97953 1.00740 1.02471 0.98918 

3x102 1.21358 1.43730 1.54759 1.27769 

-102 0.97953 1.00740 1.02471 0.98918 

-3x102 1.21358 1.43730 1.54759 1.27769 

M 2 4 6 2 

D-1 102 102 102 2x102 

Sc 1.3 1.3 1.3 1.3 

 
V VI VII VIII 

0.99015 0.93807 0.94479 0.97030 

1.26354 0.96081 0.96725 0.99172 

0.99015 0.93807 0.94479 96.0345 

1.26354 0.96081 0.96725 0.99172 

2 2 2 2 

3x102 102 102 102 

1.3 0.24 0.6 2.01 

 

Table – 11  Nusselt number (Nu) at r = 1 
G I II III 

102 0.59175 -0.37042 -1.10500 
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3x102 0.48243 -0.42164 -1.12281 

-102 0.59179 -0.37042 -1.10500 

-3x102 0.48243 -0.42164 -1.12281 

α 2 4 6 

N 1 1 1 

 
IV V VI 

0.59764 0.60520 0.60537 

0.57434 0.60463 0.60530 

0.59764 0.60520 0.60537 

0.57434 0.60463 0.60530 

2 2 2 

2 -0.5 -0.8 

 
Table – 12   Nusselt number (Nu) at r = 2 

G I II III 
102 0.97953 2.11236 3.03342 

3x102 1.21358 2.27379 3.15007 

-102 0.97953 2.11236 3.03342 

-3x102 1.21358 2.27379 .15007 

α 2 4 6 

N 1 1 1 

 
IV V VI 

0.96689 0.95073 0.95037 

1.01671 0.95198 0.95053 

0.96689 0.95073 0.95037 

1.01671 0.95198 0.95053 

2 2 2 

2 -0.5 -0.8 

 

Table – 13   Nusselt number (Nu) at r = 1 
G I II III IV 

102 0.61155 0.59277 0.56716 0.53015 

3x102 0.60106 0.58276 0.55780 0.52169 

-102 0.61155 0.59277 0.56716 0.53015 

-3x102 0.60106 0.58276 0.55780 0.52169 

γ 0.3 0.5 1.5 2.5 

 
V VI VII VIII 

0.64276 0.65405 0.70504 0.78365 

0.63145 0.64243 0.69199 0.76825 

0.64276 0.654050 0.70504 0.78365 

0.63145 0.64243 0.69199 0.76825 

-0.3 -0.5 -1.5 -2.5 

 
Table – 14   Nusselt number (Nu) at r = 2 

G I II III IV 
102 0.94709 0.96777 0.99608 1.03727 

3x102 0.96947 0.98925 1.01636 1.05586 

-102 0.94709 0.96777 0.99608 1.03727 

-3x102 0.96947 0.98925 1.01636 1.05586 

γ 0.3 0.5 1.5 2.5 

 
V VI VII VIII 

0.91287 0.90054 0.84524 0.76034 

0.93680 0.92504 0.87237 0.79183 

0.91287 0.90054 0.84524 0.76034 

0.93680 0.42504 0.87237 0.79183 

-0.3 -0.5 -1.5 -2.5 

 
Table – 15    Nusselt number (Nu) at r = 1 
G I II III IV 
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102 0.3271 1.17948 2.31515 3.45098 

3x102 0.31780 1.16800 2.30154 3.43509 

-102 0.32781 1.17948 2.31515 3.45098 

-
3x102 

0.31780 1.16800 2.30154 3.43509 

Q1 0.5 2 4 6 

 

Table – 16   Nusselt number (Nu) at r = 1 
G I II III IV 

102 1.26891 0.30316 -
0.98449 

-
2.27221 

3x102 1.29039 0.32741 -
0.95628 

-
2.23976 

-102 1.26891 0.30316 -
0.98449 

-
2.27221 

-
3x102 

1.29039 0.32741 -
0.95628 

-
2.23976 

Q1 0.5 2 4 6 

 

Table – 17   Sherwood number (Sh) at r = 1 
Sc I II III IV 

0.24 1.04479 0.68910 0.34352 -0.16133 

0.6 0.96103 0.58765 0.32786 -0.1436 

1.3 0.84567 0.48796 0.30786 -0.1231 

2.01 0.67923 0.37896 0.22456 -0.1032 

γ 0.3 0.5 1.5 2.5 

 
V VI VII VIII 

-3.10278 -3.13229 2.17551 3.20499 

-6.22396 -6.28336 2.17551 3.20499 

3.10278 3.13229 2.17551 3.20499 

6.22396 6.28336 2.17551 3.20499 

-0.3 -0.5 -1.5 -2.5 

                                                                   

   Table – 18    Sherwood number (Sh) at r = 2 
Sc I II III IV 

0.24 0.80255 1.09567 1.50414 2.11563 

0.6 0.6255 1.02337 1.3480 2.0569 

1.3 0.5255 0.89765 1.2518 2.0056 

2.01 0.3899 0.78654 1.2112 1.89763 

γ 0.3 0.5 1.5 2.5 

 
V VI VII VIII 

0.32633 0.15689 -0.58570 -1.69652 

0.306778 0.1387 -0.4570 -1.5958 

0.287659 0.1183 -0.58570 -1.3959 

0.223567 0.0981 -0.58570 -1.11233 

-0.3 -0.5 -1.5 -2.5 
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